

A Privacy Preserving Approach to Energy Theft Detection in Smart Grids

Christopher Richardson and Nicholas Race

School of Computing & Communications Lancaster University, UK

c.richardson@lancaster.ac.uk, n.race@lancaster.ac.uk

Paul Smith

Digital Safety & Security Department AIT Austrian Institute of Technology Vienna, Austria

paul.smith@ait.ac.at

Aim to detect tampering of smart meters for financial gain

Based on a diagram by Tom Chevalier

Privacy Issue

It is important to be able to detect energy theft, while still preserving the privacy of customers

Fine grained data can leak sensitive information

Smart Meter Tampering

Distribution of solar nodes

The data was obtained from the Sheffield Solar Group at the University of Sheffield: http://www.microgen-database.org.uk/

5

Normalised Solar Power Electricity Production

6

Process Diagram

Paillier Cryptosystem

Partially homomorphic

Supports addition operation

 Also supports multiplication, via use of a plaintext and ciphertext

Euclidean Distance

Sum of the difference between two houses solar panel outputs, across a day

Euclidean Distance

$$d(q_1, p_1) = \sqrt{\sum_{i=1}^{n} (q_i - p_i)^2}$$

Equivalent to the below (necessary as we can't perform exponentiation on ciphertexts where we don't know the plaintext with Paillier):

See: S. D. Rane, W. Sun and A. Vetro, "Secure distortion computation amolige untrusting parties using homomorphic encryption," 2009

Experimental Platform

In 'Software Architecture for a Smart Grids Test Facility - IT Implementation for an Emulated Low Voltage Smart Grid' BEA is realised through the use an embedded industrial PC, such as the Siemens Nanobox PC SIMATIC IPC227D 19

& Mininet

Initial Results – F1 Score

 $F_1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$ 1.2 1 $precision = \frac{tp}{tp + fp}$ 0.8 0.6 $recall = \frac{tp}{tp+fn}$ **—** f1 0.4 0.2 0 1.5 2 2.5 3 1 3.5

Amplification

F1

12

Conclusion

Privacy issues highlighted

 Preliminary tests of our system on two testbeds (Raspberry Pis & Mininet)

Initial accuracy of results presented

Future Work

 Experimentation with differing geospatial sizes

• Filtering of data prior to euclidean distance

 Using similar techniques for attack detection in other systems

Any Questions?

Also feel free to e-mail me at c.richardson@lancaster.ac.uk